Data processing pipeline for a time-sampled imaging Fourier transform spectrometer

نویسندگان

  • David A. Naylor
  • Trevor R. Fulton
  • Peter W. Davis
  • Ian M. Chapman
  • Brad G. Gom
  • Locke D. Spencer
  • John V. Lindner
  • Nathan E. Nelson-Fitzpatrick
  • Margaret K. Tahic
  • Gary R. Davis
چکیده

Imaging Fourier transform spectrometers (IFTS) are becoming the preferred systems for remote sensing spectral imaging applications because of their ability to provide, simultaneously, both high spatial and spectral resolution images of a scene. IFTS can be operated in either step-and-integrate or rapid-scan modes, where it is common practice to sample interferograms at equal optical path difference intervals. The step-and-integrate mode requires a translation stage with fast and precise point-to-point motion and additional external trigger circuitry for the detector focal plane array (FPA), and produces uniformly position-sampled interferograms which can be analyzed using standard FFT routines. In the rapid-scan mode, the translation stage is continuously moving and interferograms are often acquired at the framerate of the FPA. Since all translation stages have associated velocity errors, the resulting interferograms are sampled at non-uniform intervals of optical path difference, which requires more sophisticated analysis. This paper discusses the processing pipeline which is being developed for the analysis of the non-uniform rapid-scan data produced by the Herschel/SPIRE IFTS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The data processing pipeline for the Herschel SPIRE Fourier Transform Spectrometer

We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SPIRE observations and produces calibrated spectra for all resolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer...

متن کامل

In-flight calibration of the Herschel-SPIRE instrument*

SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory’s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194−671 μm (447−1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrume...

متن کامل

Compressive Sensing-based Mrireconstruction in Fractional Fourier Domain

Compressive sensing is an emerging field in digital signal processing. It introduce a new technique to image reconstruction from less amount of data. This methodology reduces imaging time in MRI. Compressive sensing exploit the sparsity of the signal. In this paper Fractional Fourier is used as sparsifying transform and signal sampled by random sampling . Run length encoding is applied to code ...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004